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У статті розглянуто проблему забезпечення якості питної води у сільських 
районах Житомирської області, де значна частина населення користується нецен-
тралізованими джерелами водопостачання. Актуальність дослідження зумовлена 
високим рівнем забруднення вод нітратами, залізом і підвищеною твердістю, що 
створює ризики для здоров’я населення. Обґрунтовано актуальність використання 
інтегральних методів оцінювання, які дозволяють кількісно відобразити не лише 
перевищення окремих показників, а й структуру відхилень від нормативних зна-
чень. Запропоновано використання метрики Хеммінга як інструменту інтеграль-
ної оцінки якості питної води. Метод дозволяє кількісно оцінити відмінності між 
експериментальними показниками та нормативними значеннями, що забезпечує 
простоту розрахунків, об’єктивність і можливість автоматизації моніторингу. 
Дослідження проведено на території чотирьох районів області – Бердичівського, 
Житомирського, Коростенського та Новоград-Волинського за трьома ключовими 
показниками: вмістом нітратів, загального заліза та загальної твердості. Розрахо-
вано статистичні характеристики похибок (MAE, MSE) і визначено інтегральні 
показники якості води. Установлено, що лише 36 – 45 % зразків відповідають 
нормативам, тоді як 20 – 40 % мають критичний рівень забруднення. Найгірші 
результати зафіксовано у Бердичівському районі, де концентрація нітратів пере-
вищує норму в 2,6 рази. Моделювання за відстанню Хеммінга показало, що вода 
прийнятної якості характеризується значеннями метрики до 16,8, а перевищення 
цього рівня вказує на підвищені ризики. Метод продемонстрував ефективність у 
класифікації зразків води за ступенем забруднення та дозволив сформувати інте-
гральну оцінку стану джерел водопостачання. Отримані результати свідчать про 
доцільність використання відстані Хеммінга як простої та надійної альтернативи 
традиційним індексам якості води, що дає змогу створювати автоматизовані сис-
теми моніторингу та картографічні сервіси для прийняття управлінських рішень 
на рівні громад. Практична значущість роботи полягає у можливості застосуван-
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ня методу для підвищення екологічної безпеки водопостачання й реалізації цілей 
сталого розвитку ООН (ЦСР-6).

Ключові слова: питна вода, якість, нітрати, залізо, твердість, інтегральна 
оцінка, відстань Хеммінга, Житомирська область.

Постановка проблеми. Питна вода є одним з ключових ресурсів, 
необхідних для підтримання життя та здоров’я людини. Відповідно до 
даних Всесвітньої організації охорони здоров’я, понад 2 мільярди людей 
у світі не мають доступу до безпечної води для споживання, що створює 
значні ризики виникнення інфекційних захворювань та хронічних інтокси-
кацій [1]. Якість питної води визначається комплексом фізико-хімічних, 
органолептичних і мікробіологічних показників, які повинні відповідати 
встановленим нормативам. В Україні ці нормативи регламентуються 
ДСанПіН 2.2.4-171-10 «Гігієнічні вимоги до води питної, призначеної для 
споживання людиною» [2], а також гармонізуються з європейськими стан-
дартами, зокрема Директивою Ради 98/83/ЄС [3].

Процес моніторингу якості води, завдяки якому можна постійно 
контролювати стан води в режимі реального часу та швидко реагувати 
на зміни, можна автоматизувати за допомогою математичних моделей. 
Оскільки моделі можуть замінити частину експериментальних вимірю-
вань, моделювання дозволяє зменшити витрати на фізичні дослідження 
і моніторинг. Математичні моделі є також важливими інструментами для 
державних органів та організацій, які займаються охороною водних ресур-
сів, а також дозволяють інтегрувати великі обсяги даних із різних дже-
рел, таких як гідрологічні, хімічні, біологічні та екологічні показники. За 
допомогою моделювання можна виявляти потенційні ризики для здоров’я 
людей через забруднену питну воду, оскільки воно дозволяє оцінити вплив 
різних показників якості води на здоров’я, наприклад, рівня нітратів, важ-
ких металів чи біологічних забруднювачів, і відповідно, коригувати заходи 
щодо їх контролю [4; 5].

Традиційні методи оцінки якості питної води передбачають ана-
ліз кожного показника окремо, що не завжди дозволяє отримати цілісне 
уявлення про стан води. У зв’язку з цим все більшого поширення набува-
ють інтегральні методи, які дозволяють об’єднати інформацію про кілька 
параметрів у єдиний узагальнений показник [6; 7]. Одним із таких мето-
дів є відстань Хеммінга, яка історично була розроблена для виявлення та 
виправлення помилок у цифрових кодах [8], але знайшла застосування в 
біоінформатиці, аналізі даних та екологічному моніторингу [9].

Суть методу полягає у визначенні кількості відмінностей між двома 
наборами даних однакової довжини – у випадку контролю якості води це 
вектори, що містять інформацію про відповідність або невідповідність 
кожного показника нормативу. Такий підхід дозволяє швидко та об’єк-
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тивно визначати кількість перевищених нормативів і оцінювати загальний 
стан води. Крім того, відстань Хеммінга може бути інтегрована в автома-
тизовані системи моніторингу, що робить її ефективним інструментом для 
оперативного прийняття управлінських рішень у сфері водопостачання.

Аналіз останніх досліджень і публікацій. У науковій літературі від-
значається, що методи на основі метрик відстаней, зокрема відстані Хем-
мінга, демонструють високу ефективність у сфері управління відходами 
[10], прогнозування опадів [11], ефективного енергоспоживання [12; 13], 
роботизації сільського господарства [14; 15], цифровізації промисловості 
[16], управління надзвичайними ситуаціями [17], моніторингу рівня моря 
і хвильових характеристик [18], вивчення біорізноманіття [19], управління 
сейсмічними даними [20], прогнозуванні аварійних ресурсів на нафтогазо-
проводах [21], завданнях класифікації екологічних даних, виявлення ано-
малій та формуванні інтегральних індексів якості [22].

Зокрема, AN Da et al. (2013) застосовували вираз Хеммінга у 
фузі‑моделі оцінки якості підземних вод біля полігонів твердих побуто-
вих відходів. Метод показав високу коректність порівняно з традиційними 
фузі-методами – результати відповідали класам якості IV та III, а роздільна 
здатність моделі виявилась високою [23]. У роботі S. Xu et al. (2015) було 
розроблено модель динамічної оцінки якості води, де параметр p = 1 відпо-
відав лінійному застосуванню відстані Хеммінга для розрахунку метрики 
між зразками та стандартами, у противагу евклідовій відстані p = 2 [24]. 
Zamri et al. (2022) застосували відстань Хеммінга в алгоритмі K‑NN для 
класифікації якості річкової води. У порівнянні з іншими метриками, 
Hamming здобув точність 90,12 % у класифікації – поступаючись лише 
моделі з ентропійним зважуванням (99,90 %) [25]. Дослідження Yan (2019) 
описує використання відстані Хеммінга в класифікації аномалій у водних 
даних методом k‑NN, хоча без прямої фокусування на якість питної води 
[26]. У дослідженні, проведеному на поверхневих водах застосовується 
зважена Hamming-відстань у рамках поліпшеного «сіро-кореляційного» 
підходу для визначення подібності до стандартів якості [27].

Для дослідження якості питної води такий підхід дозволяє врахувати 
не тільки факт перевищення норми окремого показника, але й загальну 
кількість та структуру відхилень. Застосування відстані Хеммінга для 
моделювання та інтегральної оцінки якості питної води є перспективним 
напрямком, що поєднує простоту обчислень, об’єктивність оцінки та мож-
ливість масштабування в системах моніторингу різного рівня.

Формулювання цілей статті. Таким чином, метою даного дослі-
дження було використання відстані Хеммінгу для моделювання та інте-
гральної оцінки якості питної води джерел нецентралізованого водопоста-
чання на прикладі Житомирської області.
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Матеріали і методи дослідження. Дослідження проведено у межах 
сільських населених пунктів Житомирської області (Бердичівський, Жито-
мирський, Коростенський, Новоград-Волинський райони). Для оцінки 
якості питної води джерел нецентралізованого водопостачання було 
обрано три ключові показники: нітрати (мг/дм³), залізо загальне (мг/дм³), 
загальна твердість (ммоль/дм³), вміст яких визначали за загальноприйня-
тими методиками. Нормативні значення обирали відповідно до ДСанПіН 
2.2.4-171-10 [2] та Директиви Ради 98/83/ЄС [3].

Модель відстані Хеммінгу використовується для порівняння отри-
маних експериментальних даних з «еталонним» зразком. Велика відстань 
Хеммінга може вказувати на аномальний зразок. Групування схожих зраз-
ків води на основі їхньої відстані Хеммінга може допомогти виявити пат-
терни забруднення. Модель описується такою залежністю:

HD
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�
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| |

,                                            (1)

де x  – еталонне (нормативне) значення показника;
xi  – виміряне значення показника;
n  – кількість досліджуваних показників (у нашому випадку n  = 3).
Для підвищення точності оцінювання були використані такі статис-

тичні характеристики: середня абсолютна похибка (Mean Absolute Error) 
та середньоквадратична похибка (Mean Squared Error).

Середня абсолютна похибка (MAE) розраховується як середнє абсо-
лютних різниць між цільовим значенням і значенням, що передбачене 
моделлю:
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де N – число прикладів вибірки;
yi  – цільове значення і-го прикладу;
yi
  – значення, передбачене моделлю.
Середньоквадратична похибка (MSE) використовується у випадках, 

коли необхідно підкреслити великі похибки та обрати модель, яка дає най-
меншу кількість саме великих похибок. Великі значення похибок стають 
помітнішими за рахунок квадратичної залежності. MSE розраховується за 
формулою:
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де n – кількість спостережень за якими будується модель та кількість 
прогнозів;
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yi  – фактичне значення залежної змінної для і-го спостереження;
yi
  – значення залежної змінної, що передбачено моделлю.
Результати досліджень та їх обговорення. Характерною особли-

вістю функціонування сільських селітебних територій України є вико-
ристання нецентралізованих джерел водопостачання для задоволення 
власних побутових та питних потреб. Не винятком у цьому сенсі є й Жито-
мирська область, сільські населені пункти якої забезпечені централізова-
ним водопостачанням лише на 7,7 %, тобто лише 125 сіл станом на 2023 рік 
мали централізований водопровід [28].

Житомирська область належить до одного із найбільш розвинених 
аграрних регіонів України. Область знаходиться у сприятливих природ-
но-кліматичних умовах, що сприяє успішному веденню сільського госпо-
дарства. Житомирщина не лише забезпечує власні потреби у продуктах 
рослинництва і тваринництва, а й демонструє значні показники експорту 
цієї продукції. Однак водночас гостро стоїть проблема впливу діяльності 
сільськогосподарського виробництва на довкілля. Зокрема, це й забруд-
нення водних об’єктів сільськогосподарськими стоками, що містять над-
лишки мінеральних добрив.

У результаті досліджень установлено, що середній вміст нітратів у 
питній воді джерел питного водопостачання усіх досліджуваних районів 
Житомирської області перевищував норматив, регламентований ДСан-
ПіН 2.2.4-171-10 «Гігієнічні вимоги до води питної, призначеної для спо-
живання людиною». Максимальний вміст нітратів зафіксовано у межах 
Бердичівського району на рівні 129,8 мг/дм3, що перевищує норматив у 
2,6 рази.

Такий рівень є особливо небезпечним для дітей та вагітних жінок, 
оскільки пов’язаний із ризиком розвитку неканцерогенних ефектів [29].

У країнах Європейського Союзу норматив заліза у питній воді уста-
новлений на рівні 0,2 мг/дм3, в Австралії, Японії, Китаї, США, Канаді – 
на рівні 0,3 мг/дм3, що відповідає нормативу, затвердженому ВООЗ, який 
обмежується відомостями лише про зміну органолептичних властивостей 
при його перевищенні [30]. Вміст загального заліза у зразках коливався 
від 0,55 мг/дм³ до 1,06 мг/дм³, що також перевищує нормативи ВООЗ та 
Директиви 98/83/ЄС. Високі значення спричиняють погіршення органо-
лептичних властивостей води (смак, колір, запах) і можуть бути індика-
тором техногенного або природного надходження заліза у підземні гори-
зонти. В Україні з 2010 року діє 2 нормативи вмісту заліза: 0,2 мг/дм3 – для 
централізованого водопостачання і 1 мг/дм3 допускається для води, що 
надходить із джерел нецентралізованого водопостачання [2].

Середній вміст заліза загального у питній воді джерел нецентралізо-
ваного водопостачання сільських населених пунктів Житомирської області 
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коливався у межах від 0,55 мг/дм3 у Житомирському районі до 1,06 мг/дм3 
у Новоград-Волинському.

В Україні для джерел нецентралізованого водопостачання встанов-
лено норматив твердості на рівні 10 ммоль/дм3, а за ДСТУ 7525:2014 його 
оптимальний рівень визначено у межах від 1,5 до 7 ммоль/дм3.

Середня твердіть питної води джерел нецентралізованого водопо-
стачання сільських населених пунктів Житомирської області коливається 
у межах від 7,2 ммоль/дм3 у Житомирському районі до 10,2 ммоль/дм3 у 
Бердичівському районі, що свідчить про підвищену твердість питної води, 
її високу мінералізацію та негативно впливає на побутове використання 
води, зокрема на роботу техніки та систем опалення.

Відстань Хеммінга – це міра відмінностей між двома наборами 
даних, яка визначає кількість позицій, у яких дані відрізняються. Це можна 
використати для оцінки якості питної води шляхом порівняння наборів 
показників якості з прийнятними значеннями.

Низька відстань Хеммінга вказує на те, що якість води близька до 
прийнятної, і вода, ймовірно, безпечна для споживання. Натомість високе 
значення відстані Хеммінга вказує на те, що якість води значно відріз-
няється від прийнятних значень, і така вода може становити ризик для 
здоров’я.

Серед переваг використання відстані Хеммінга варто виділити:
1. Простота: відстань Хеммінга легко розрахувати за допомогою 

простих математичних операцій.
2. Об’єктивність: цей метод забезпечує об’єктивну оцінку якості 

води, виключаючи суб’єктивні інтерпретації.
3. Виявлення кількох відхилень: дозволяє виявляти не тільки окремі 

випадки перевищення, але й загальну тенденцію відхилення від прийнят-
них значень. Велика відстань Хеммінга може вказувати на аномальний 
зразок.

4. Кластеризація даних: групування схожих зразків води на основі 
їхньої відстані Хеммінга може допомогти виявити паттерни забруднення.

Недоліками застосування відстані Хеммінга є те, що ця модель не 
враховує інші фактори, що можуть вплинути на якість води, такі як візу-
альні характеристики і органолептичні властивості та залежність від 
нормативних значень, які можуть відрізнятися залежно від регіону та 
юрисдикції.

Моделювання якості питної води джерел нецентралізованого водо-
постачання сільських населених пунктів досліджуваних районів Жито-
мирської області було здійснено за вмістом нітратів, заліза загального та 
жорсткості.

Результати розрахунків статистичних характеристик наведено у табл. 1.
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Таблиця 1. Статистичні характеристики показників якості питної води

Район MAE MSE
Нітрати Залізо Твердість Нітрати Залізо Твердість

Бердичівський 125,7 1,3 4,2 38282,7 3,5 29,8
Житомирський 84,8 0,9 2,1 18584,6 1,3 7,8
Коростенський 65,5 0,98 4,4 9221,5 1,8 35,4

Новоград-Волинський 68,83 1,1 3,1 10420,2 3,4 17,6

Для визначення відстані Хеммінга вимірювані показники якості 
питної води (хі) порівнювали із нормативним значенням (х). Стосовно 
вмісту нітратів, то при нормативі 50,0 мг/дм3, який установлено ДСанПіН 
2.2.4-171-10, відстань збільшується навіть при значеннях значно менших 
за норматив. Тому для оцінки було використано норматив на рівні 5,0 мг/
дм3, який установлено Директивою Ради 98/83/ЄС про якість води, при-
значеної для споживання людиною. Отже, значення нормативу для визна-
чення відстані Хеммінга за вмістом нітратів описується рівнянням 4:

x
HD

HD
�

�
�

�
�
�
�

�
�

50

5

,

,
,                                            (4) 

де х – нормативне значення вмісту нітратів, мг/дм3;
HD  = відстань Хеммінга.
Для оцінювання якості питної води за вмістом показника загальної 

твердості також був використаний норматив, наведений у Директиві ЄС на 
рівні 7,0 ммоль/дм3. Стосовно вмісту заліза, то його нормативне значення 
було на рівні 1,0 мг/дм3, що регламентується ДСанПіН 2.2.4-171-10.

У такий спосіб, на основі розрахунків відстані Хеммінгу були розро-
блені моделі якості питної води (рис. 1).

У результаті моделювання якості питної води за відстанню Хеммінга 
установлено, що вода прийнятної якості описується відстанню до рівня 
16,8, тоді як перевищення цього рівня вказує на зростання ризиків.

Використання відстані Хеммінга дозволило отримати інтегральну 
оцінку якості води у відсотках придатних зразків (табл. 2).

Зокрема, у Бердичівському районі лише 36,4 % зразків відповідали 
вимогам, тоді як 40 % віднесено до категорії критичної якості (рис. 2). 
У Житомирському (рис. 3) та Коростенському районах (рис. 4) показники 
кращі: понад 44 % зразків придатні, але 19–22 % класифікуються як кри-
тично забруднені. У Новоград-Волинському районі 40 % зразків були при-
датними, але понад п’ята частина – критичної якості (рис. 5).

Отримані результати досліджень свідчать, що в усіх досліджуваних 
районах існує значна частка зразків питної води, які не відповідають нор-
мативам. Найгірші показники зафіксовано у Бердичівському районі, де 
частка критично забруднених джерел досягає 40 %.
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Рис. 1. Критерії оцінки якості питної води за відстанню Хеммінга

Таблиця 2. Інтегральна оцінка якості питної води  
за відстанню Хеммінга, %

Район Придатна Критична Непридатна
Бердичівський 36,4 40,0 23,6
Житомирський 44,6 21,5 33,9
Коростенський 44,4 19,8 35,8

Новоград-Волин-
ський 40,0 21,4 38,6

Основним фактором відхилень є перевищення вмісту нітратів, що 
становить ризик для здоров’я, особливо для дітей. Відстань Хеммінга чітко 
відобразила ці відхилення у вигляді збільшення інтегрального показника.
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Рис. 2. Розподіл зразків питної води за відстанню Хеммінга у Бердичівському районі
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Рис. 3. Розподіл зразків питної води за відстанню Хеммінга у Житомирському районі
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Рис. 4. Розподіл зразків питної води за відстанню Хеммінга у Коростенському районі
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Рис. 5. Розподіл зразків питної води за відстанню Хеммінга  
у Новоград-Волинському районі

У світовій практиці інтегральні методи оцінки якості води базуються 
переважно на Water Quality Index (WQI) або нечітких методах багатокри-
теріального аналізу [31]. Отримані результати підтверджують, що метрика 
Хеммінга є ефективною альтернативою, оскільки забезпечує швидкість 
обчислення, можливість автоматизації моніторингу та високу чутливість 
до навіть незначних відхилень від нормативів.

На відміну від WQI, що вимагає вагових коефіцієнтів, метод відстані 
Хеммінга простіший у реалізації й менш залежний від експертних при-
пущень. Це підвищує об’єктивність оцінки та знижує ризик суб’єктивних 
спотворень.

Результати дослідження мають безпосереднє значення для системи 
екологічної безпеки у громадах, оскільки органи місцевого самовряду-
вання отримують інструмент для оперативного контролю, є можливість 
здійснювати кластеризацію джерел водопостачання за рівнем ризику, а 
також створюється основа для розробки інтерактивних картографічних 
сервісів із позначенням «червоних зон» небезпечних джерел.

Застосування цього підходу також дозволяє формувати рекомендації 
для населення, наприклад, щодо необхідності встановлення систем доочи-
стки чи використання альтернативних джерел водопостачання.

Висновки. Якість питної води в сільських районах Житомирщини 
залишається критичною: значна частка зразків не відповідає нормативним 
вимогам за вмістом нітратів, загального заліза та показником жорсткості. 
Найбільш проблемним виявився Бердичівський район, де частка критично 
забруднених зразків досягає 40 %. Метрика Хеммінга підтвердила свою 
ефективність як простий, об’єктивний та гнучкий метод інтегральної 
оцінки якості питної води. Вона дозволяє не лише визначати факт пере-



Водні біоресурси та аквакультура, 2(18) / 2025

17

вищення окремих нормативів, а й кількісно оцінювати загальний рівень 
відхилень, що робить її корисною для системного моніторингу.

Інтегральні результати показали, що в середньому лише 36–45 % 
зразків у досліджених районах відповідають санітарним вимогам, тоді як 
20–40 % перебувають у критичній зоні. Це свідчить про системний ризик 
для здоров’я населення, особливо дітей, та вимагає впровадження додатко-
вих заходів контролю й очищення води.

Використання відстані Хеммінга дало змогу створити класифіка-
ційні моделі, що можуть бути інтегровані в автоматизовані системи моні-
торингу, а також застосовані для кластеризації населених пунктів за рівнем 
водної небезпеки. Це створює основу для формування інтерактивних кар-
тографічних сервісів та прийняття управлінських рішень на рівні громад.

Практична значущість дослідження полягає у можливості застосу-
вання методу як у наукових дослідженнях, так і в управлінській діяльності 
органів місцевого самоврядування, що сприятиме посиленню екологічної 
безпеки водопостачання, реалізації завдань сталого розвитку (ЦСР-6) та 
підвищенню якості життя сільського населення.

Подяки. Немає
Фінансування. Немає
Конфлікт інтересів. Немає.
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The article examines the problem of ensuring drinking water quality in rural 
areas of Zhytomyr Region, where a significant portion of the population relies on 
non-centralized water supply sources. The relevance of the study is determined by the 
high levels of water contamination with nitrates, iron, and increased hardness, which 
pose health risks to the population. The importance of applying integral assessment 
methods is substantiated, as they allow for a quantitative representation not only of 
individual parameter exceedances but also of the overall structure of deviations from 
regulatory values. The use of the Hamming metric is proposed as a tool for the integral 
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assessment of drinking water quality. This method enables quantitative evaluation of 
differences between experimental indicators and regulatory limits, ensuring simplicity 
of calculation, objectivity, and the potential for automated monitoring. The study was 
conducted in four districts of the region Berdychiv, Zhytomyr, Korosten, and Novohrad-
Volynskyi – based on three key parameters: nitrate content, total iron, and total hardness. 
Statistical error characteristics (MAE, MSE) were calculated, and integral indicators of 
water quality were determined. It was established that only 36 – 45% of samples meet 
regulatory standards, while 20 – 40% show critical levels of contamination. The poorest 
results were recorded in the Berdychiv District, where nitrate concentrations exceed 
the norm by a factor of 2.6. Modeling based on the Hamming distance demonstrated 
that water of acceptable quality corresponds to metric values up to 16.8, and exceeding 
this level indicates increased risks. The method proved effective in classifying water 
samples according to the degree of contamination and allowed for the formation of an 
integral assessment of water supply sources. The obtained results confirm the feasibility 
of using the Hamming distance as a simple and reliable alternative to traditional water 
quality indices, enabling the creation of automated monitoring systems and cartographic 
services to support community-level management decisions. The practical significance 
of the study lies in the potential application of the method to enhance the environmental 
safety of water supply and to contribute to the achievement of the UN Sustainable 
Development Goals (SDG 6).

Key words: drinking water, quality, nitrates, iron, hardness, integral assessment, 
Hamming distance, Zhytomyr Region.
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